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A characterization, using polynomials introduced by A. V. Kolushov, is given ror
the local Lipschitz constant ror the best approximation operator in Chebyshev
approximation rrom a Haar set. The characterization is then used to study the
existence or unirorm local Lipschitz constants. 1:) 1994 Academic Press. Inc.

1. INTRODUCTION

Let X be a closed subset of [a, b] with at least n + 1 points, and let C(X)
denote the space of continuous real valued functions on X endowed with
the uniform norm 11·11. Let H n denote a Haar set of dimension n, and let
the best approximation of I in C(X) from H n be Bn(f). Freud [12]
showed that Bn is Lipschitz continuous at f, i.e., Bn has a global Lipschitz
constant at f, A.n(f), defined by

For 15 > 0, define

)'n(f, b) = sup{ II Bn(f) - Bn(g)II/111 - gil: °< III - gil < 15, gE C(X)}. (1.2)

Then the local Lipschitz constant, introduced in [1], is defined by

A. ~(f) = lim A.n(f, 15 ).
lJ_O+
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(1.3)
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It was introduced because of the difficulty of dealing with An(f) and
because one is interested in the behavior of B near f Knowledge of A~(f)

will help us know better the properties of the best approximation operator,
one of the more difficult problems in approximation theory.

The behavior of the global Lipschitz constant and its dependence on X,
n, and f have often been investigated (see, e.g., [7, 11, 16-19]). The local
Lipschitz constant has been investigated in [1,2, 8], and the relationship
between the local and global Lipschitz constants has been explored in
[1-3].

A significant difficulty in studying the local and global Lipschitz con
stants has been the lack of characterizations of them in a general setting.
The Lipschitz constants are intimately related to the strong unicity con
stant Yn(f); in particular, it is known [10] that )'n(f) ~ 2/yn(f). Studies of
the strong unicity constants have frequently been based on characteriza
tions of them, some of which appear in [4, 5, 21]. These characterizations
show that the strong unicity constant depends only on the signs of the
error en(f) on the extreme points En(f), where En(f) is defined by

(1.4 )

en(f) is defined by
(1.5)

and IEn(f)1 denotes the cardinality of En(f).
In the special case when En(f) has minimal cardinality, i.e., IEn(f)1 =

n + 1, a characterization of A~(f) was given in [1] and then used to study
A~(f) and the Gateaux derivative of Bn'

Theorem 1 characterizes the local Lipschitz constant without any
assumption on IEn(f)I, using polynomials introduced by A. V. Kolushov
[14]. The characterization shows that A~(f), like the strong unicity con
stant, depends only on En(f) and the signs of en(f) at the points of En(f).
Theorem 1 also generalizes the result in [1] about the relationship between
A~(f) and the Gateaux derivative DrBn' A Kroo [13] showed that the
right Gateaux derivative of Bn at f in the direction r/J,

(1.6)

exists for each r/J in C(X). With the assumption of minimal cardinality, i.e.,
IEn(f)1 = n + 1, it was shown in [1] that

(1.7)

Theorem 1 shows that (1.7) holds with no restriction on IEn(f)I.
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The problem of determining whether a set S ~ C(X) has a uniform
Lipschitz constant, i.e., sUPPn(f) :fE S} is bounded, was first studied in
[11] and further studied in [6,16-18]. The characterization of A~(f) in
Theorem 1 and results from [7] are used to study the boundedness of
sup{A.~(f) :jE S} in Section 3. Unlike the situation for strong unicity
constants, Example 2 shows that a set can have a uniform local Lipschitz
constant while not having a uniform global Lipschitz constant.

Theorem 2 determines precisely when a set of functions, each with the
minimal number of extreme points, has a uniform local Lipschitz constant.
Theorems 3, 4, and 5 generalize Theorem 2. Theorem 7 and Example 3 give
specific families of functions which have uniform local Lipschitz constants
but not uniform strong unicity constants.

Remark. The study of the existence of a uniform global Lipschitz con
stant for S is affected by the uniform boundedness of the functions in S
[11] and by the presence of almost alternation sets. As defined in [7], a
sequence S = {fk} ':~ I does not have an almost alternation set, if whenever
a sequence {gk} ':= I satisfies limk ~ ex Ilfk - gk II = 0, there is a constant M
such that for all k = 1, ..., do(A(fd, A( gk» ~ M IIfk - gkll where A(fd =
{x i}7:/ and A(gd= {Yi}7:11are any alternation sets for fk and gk respec
tively. Here do(A(fd, A(gd)=max1';;i,;;n Ix i - Yil when XI EE+(fd and
YIEE+(gk), or when XtEE-(fd and YIEE-(gk); otherwise, do(A(fk),
A(gd) is set equal to b-a. The characterization of A~(f) in Theorem 1
shows that it is determined by the extreme points En(f), and hence uniform
boundedness of ).~(f) for f in S is unaffected by almost alternation sets or
by the uniform boundedness of S.

2. KOLUSHOV POLYNOMIALS

A. V. Kolushov [14] established a representation of DJB;(/J) with no
restrictions on IEn(f)1 in terms of polynomials Pn(f, ¢J), hereafter called
Kolushov polynomials.

An alternant An(f) of the error function is any set {xo, ..., x,,} ~ E,,(f)
such that e,,(f)(x;)=y(-I)i Ilen(f)II, i=O, ...,n where }'= ±1.

THEOREMI [14]. Given ¢J in C(X) andfin C(X)\Hn, there exists a
unique constant (X and a unique polynomial Pn(f, ¢J) in Hn such that

(¢J(x) - pAf, ¢J)(x» sgn e,,(f)(x) ~ (X (2.1 )
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for every x in En(f); in addition, there exists an alternant An,.p(f), not
necessarily unique, on which equality holds in (2.1), Furthermore,

DjB:(,p)=Pn(J,,p), (2,2)

where iffEHn, then Pn(J,,p)=Bn(,p),

Denote An,.p(f) by A.p. The Kolushov Lipschitz constant KAn(f), intro
duced in [8], is defined by

Thus,

KAn(f) = sup{ 1\ PnU; 1,6)11 : 111,611 ~ t}. (2.3 )

(2.4 )

It is known [8] that KAn(f) = A~(f) if X is finite and in general [8] that

(2.5 )

Also if IEn(f)1 = n + 1, so that En(f) consists of a single alternant of en(f),
then Pn(J, ifJ) is just the best approximate to ifJ on En(f) [7]; in this case
it was shown in [1] that A~(f) = KAn(f), Notice that KAn(f) depends only
on En(f) and the sign of the error function en(f) on En(f).

3. CHARACTERIZATION OF A~(f)

First observe that for a given function f in qX), ).~(cf+ h) = A~(f) for
any non-zero constant c and any function h in H n , Since the unit ball of
a Haar space Hn is compact it has a uniform modulus of continuity

w(J) = sup{ wh(b) : hE Hn , Ilhll = I}, (3.1 )

where w(J)l 0 as J 1O. Given any positive integer J and a function f in
C(X), let JJ satisfy w(JJ)~(J).(f)) 1. We require some additional nota
tion. Let

E:(f) = {x: en(f) = Ilf- Bn(f)II},

E~ (f) = {x: en(f) = -lif- Bn(f)ll},

and

d(f)=inf{lx- yl :xEE:(f), YEE;(f)}.

Also, given sets U and V, the density of U in V is defined by

J( U, V) = sup inf lu - vi,
veVuEU

(3.2)

(3.3 )

(3.4 )
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and the Hausdorff distance is

p( u, V) = max {c5( U, V), c5( V, U)}.

Convergence of sets will refer to the Hausdorff metric.
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(3.5 )

LEMMA 1. Let f E C(X), Ilfll = I, Bn(f) = 0, and J he a positive integer.
Suppose gEC(X) and en(g) has an alternant {Yo, ...,Yn} such that
there is an alternant {xo, ..., x n} of f with Ix;- y;1 <c5 b i=O, ..., nand
sgn en( g)( y;) = sgn f( x;), i = 0, ... , n. Then there exists agE C(X) such that

{xo,''''xn} is an allemant ofen(g), sgn en(g)(x;) =sgnf(x;), i=O, ... ,n,

Bn(g) = Bn(g), and Ilf- gil ~ (l + IIJ) Ilf- gil·

Proof For i = 0, ..., n define

(3.6)

We carry out the details for the case en(f)(x;} > 0; the proof in the
case en(f)(x;)<O is similar. Thus, let f(x;) = 1 so that (g-Bn(g»)

(y;)= Ilen(g)lI. Let IIf-gll =p. Then

IBn(g)(x;)- Bn(g)(y;)1 ~w(c5J) IIBn(g)11

~w(c5JPn(f) Ilf- gil

~ fJIJ. (3.7)

Hence by (3.6) and since f(Yj)~ 1=f(x;) we have

g(x;) - f(xJ = g( yJ - f(x j) + Bn g(xJ - Bn g( yJ

~f(y;} + fJ - f(x;) + PIJ

~ P(1 + IjJ). (3.8)

On the other hand,

g(x;)-f(x;)=Bng(x;)+ Ilen(g)lI- f(x;)

= Bn( g)(x;) - g(x;) + llen( g)11 + g(x;) - f(xJ

~ g(xJ - f(x;)

~ -fJ,

and hence by (3.7) and (3.8), it follows that

Ig(x;) - f(x;) I~ (1 + IjJ)p.

(3.9)
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The inequality

max{f(x)- (1 + I/J){3, B,,(g)(x)-lle,,(g)ll}

~min{f(x)+(1+ 1/1){3, B,,(g)(x) + Ile,,(g)ll}

holds for each x in X, and g(x;) is between these bounds for i = 0, ..., n. So
extend g continuously by the Tietze extension Theorem [9] to X to satisfy
the bounds and the lemma is proven.

THEOREM 1. If IE C(X), then

,<(f) = KA,,(f) = IIDfB: II· (3.10)

Proof Without loss of generality it can be assumed that II I II = 1 and
B,,(f) =0. By (2.4) and (2.5) it suffices to show that A~(f)~KA,,(f).

Let 0 < e < 15 J. A proof similar to that employed in Lemma 3 of [I] shows
that we can assume 15(£:(f), £,7(g»<e and £5(£;;(f), £;;(g»)<e for 15
small enough. Consequently, if 0 < III-gil < 15, then for some alternant
{Yo, ... , y,,} of g, there is an alternant {xo, ..., x,,} of I such that
Ixi-y,l<e and sgne,,(g)(y;)=sgne,,(f)(x;), i=O, ... ,n. By Lemma 1
choosegEC(X) such that {xo, ... ,x,,} is an alternant ofg, sgne,,(g)(x,)=
sgne,,(f)(x,), i=O, ...,n, B,,(g)=B,,(g) and 11/-gll~(1+I/J) III-gil. If
B,,(g)=O we have immediately that K),,,(f)~ IIB,,(g)II/«(1 +J 1)11 g- fll).
Now assume B,,( g) = B,,( g).,6 O. Thus g.,6 I and we can define r/J =
(g-f)/llg-/ll. Then by choosing p,,(f,r/J)=B,,(g)/IIg-/ll, (2.1) is
satisfied with .~ = (1Ie,,(g)II-1 )/11 &- III and there is equality in (2.1) on the
alternant {xi}7~0' Since Ilr/JII = I, we have

) _ _ IIB,,( &)11 >- IIB,,(g)11
K .,,(f) - II p,,(f, r/J )11 - \I g - III ~ (l + I/J) II g - fll'

and hence ),~(f) ~ (1 + 1/1) KA,,(f) for any positive integer J and the
theorem is established.

The results which follow use not only Theorem 1 as stated but also

).;Jf) ~ sup{sup{ IIB,,(r/J, A(f»11 : Ilr/JII ~ I}, A(f) an alternation set ofJ}.

(3.11 )
This holds because p,,(f,r/J)=B,,(r/J,A¢» [8].

4. UNIFORM LOCAL LIPSCHITZ CONSTANTS

In this section we restrict our attention to C[a, b]. Following [7], a set
S £; C[a, b] is said to have a uniform global Lipschitz constant if

supP,,(f) :fE S} < oc.



LOCAL LIPSCHITZ CONSTANT

Similarly S is said to have a uniform local Lipschitz constant if

sup{A~(f) :fE S} < 00.
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Since A~(f) ~ A,,(f), the circumstances in [6] which guarantee a uniform
global Lipschitz constant also guarantee a uniform local Lipschitz con
stant.

Clearly a set S has a uniform local Lipschitz constant if and only if every
sequence of functions in S does. Since A~(f) ~ 2 for every f in H" we only
study uniform local Lipschitz constants for sets Sin C(X)\HlI' In some of
the examples, approximation is from II", the algebraic polynomials of
degree n or less. Since there is a uniform strong unity constant and hence
a uniform global Lipschitz and a uniform local Lipschitz constant for all of
C(X) when n = 1 (cf. [6]), we assume henceforth that n> 1.

One of the usual special cases considered for a set S in C(X) is when
each f in S is assumed to have the minimal number of extreme points. The
following theorem, which follows immediately from the results in [7],
describes when such a set S has a uniform global Lipschitz constant.

THEOREMII [7]. Let Sr;;;C(X)\H" and let IE,,(f)I=n+l, fES.
Assume S has no almost alternation sets. Then S has a uniform Lipschitz
constant if and only if IEO\ ~ n for every cluster point EO of {E,,(f) :fE S}.

This result does not hold without the assumptions about the non
existence of almost alternation sets; however, assuming there are no almost
alternation sets excludes consideration of differentiable functions, as the
following proposition shows.

PROPOSITION 1. If S has no almost alternation set then no f in S is
differentiable in a neighborhood of any point x E E(f).

Proof Fix fES", Ilfll = 1, B,,/=O and let fk=f, k= 1, .... Fix
x E E(f), f(x) = 1 and assume x < b. Define functions gk E C(X) by
gdx+ 11k) = 1, gk = f on (x+ 1/2k, x+2Ik)', and Ilgk- fll = 1-.!(x+ 11k)
by the Tietze Extension Theorem. Then if there is no almost alternation
set, there exists a constant M such that for all k,

Thus



256

and

and
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-I f(x+ Ilk) - f(x)
->:'---'---'--'--=--'-
M ~ 11k '

But if f is differentiable in a neighborhood of x, f'(x) = O.

Remark. The characterization in the next Theorem for local Lipschitz
constants resembles the result which follows from Theorems 4 and 6 in
[6]: If every f in S satisfies IEnU)1 = n + 1, then S has a uniform strong
unicity constant if and only if IE~I = n + 1 for every cluster point E~ of
{EnU) :f E S}.

THEOREM 2. Let S r;; C(X)\Hn and let every f E S satisfy IEnU)1 =
n + I. Then S has a uniform local Lipschitz constant if and only if IE~I ~ n
for every cluster point E~ of {EnU) :fE S}.

Proof To prove sufficiency suppose EnUd= {X O•k' ..., xn.d. Set D;=
det{ Xf.k}, 0 ~ S ~ n - 1, 0 ~ j ~ n, j #- i, and D;., results from D; by replacing
X,.k with x (r #- i). Note that D;.,(x;) = (-1)'+;+ 'D,. Then we have for the
Cline polynomials

and

n

q;(x) = L (-1)' D;., (x)ID;
r= 0
,#,

n

q;(x i ) = (-1 );+ 1 I D,ID;.
,~O

r#i

(4.1 )

(4.2 )

(4.3 )

Thus Iq;(x)1 ~ MID; and

Ig;(x)1 ~M( f D)-I":::'M
1+ Iq;(x;)1 '" ,~O' '" 1

because at least one of the Dr's is bounded away from zero. Thus by
Theorem 1 in [2] we are done.

To prove necessity let EnUd = {xo.k> ..., Xn,k}, Xj,k --+ x*, j = i, i + 1, i + 2
but A~Ud~M (k=I,2, ... ). Note that A~Uk)=IIB:II, where B: is
the operator of best approximation on EnUd. Let rPk in C(X) be such
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that iPdx i,k)==I, iPdXi+l,k)== -1, iPdXj,k) ==0, J#i, i+1. Then ek==
maxjIB~(iPd-iPkl(xj,k) satisfies O~ek~1. Since .A.~(fd==IIB~II, the
polynomials Bn(iPd == Pk in Hn are uniformly bounded and a subsequence
converges to pin Hn- Then we have

and letting k ---+ 00, we obtain

Ip(x*)-11 ==e== Ip(x*)+ 11,

where a subsequence of {ed converges to e. Thus p(x*) == 0 and e == 1. On
the other hand, Ipdx i + 2,dl ==ek leads to Ip(x*)1 ==e== 1, which is a
contradiction,

Suppose now three neighboring points do not coalesce but two pairs do.
Let IXi,k-xi+ul---+O and IXs,k-Xs+l,kl---+O. Define iPk(Xi,k)== 1 ==
-iPk(X i +l.d and iPdxs,d == 1 and iPk(Xs+I,k) == 0, Then as above using Xi,k
and Xi +l,k we obtain e== I. Now Ipk(xs,k)-II ==ek== IpdxHl,dlleads to
Ip(i)-11 ==e== Ip(i)1 where {xs,d ---+i, which is a contradiction.

We now use Theorems 1 and 2 to study uniform local Lipschitz con
stants on sets S which need not contain functions with the minimal number
of extreme points. Theorems 3, 4, and 5 generalize Theorem 2.

THEOREM 3. Let Uk} be a sequence of functions in C(X)\Hn- If any
sequence of alternants of {fk} has at most two points which coalesce, then

sup .A.~(fk) < 00.
k

Proof Without loss of generality we can assume that Ilfk II == 1 and
Bn(fk) == 0, k == 1, .... By Theorem 1, for any fk there exists a iPk such that

(4.4 )

(4.5 )

Now Pn(fb iPd == Bn(iPb A(iPk)) [7], where A(iPk) is an alternation set for
fk' Define lk by lk == fk on A(iPd, Illk II ~ 1, En(Jd == A(iPd, and lk E C(X).
Then Bn(Jk) ==0 and by (4.4), for some alternation set A(Jd oflb

;'~(ld ~ IIPn(Jb iPk)1I == II Bn(iPb A(Jk)11

== II Bn(iPb A(iPk))ll

~ A.~(fk) - 1.

By assumption, at most two points in the sequences of extreme points
for {lk } can coalesce and IE(fk) I == n + 1. Hence by Theorem 2,
SUPn ;'~(Jd < 00 and hence, by (4.5), sUPn A.~(fk) < 00.
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The converse of Theorem 3 does not hold as shown by the following
example.

EXAMPLE I. Let fk (x) E C [0, 3] be defined by

if x = 0, 21k, 2,
if X= 11k, 1,3,

and be linear between the knots. Approximate from ill' Then {O, 11k, 21k}
is an alternation set for fk which has lAO I = 1. However, since {E(fk)} ~
EO = {O, 1, 2, 3}, which contains a limit alternation set, Ud has a uniform
strong unicity constant and thus a uniform local Lipschitz constant [6].

However, a partial converse of Theorem 3 holds. For the proof of the
partial converse and subsequent results, we require the following three
definitions.

DEFINITION 1. Given f in C(X), define Ln(f)( = Ln(En(f)) by letting

En(f)=E1 uE2 u ... uEL ,

where L = Ln(f) and where max{x: x E E j } < min{x: x E E i + I}, i = 1, ... ,
Ln(f) - I, and for x E E i , en(f)(x) = y( _1)i Ilen(f)II, y = ± 1.

DEFINITION 2. For a sequence Ud in C(X) with {En(fk)} ~E~,
let Ln(EO) == Ln(E°(fd) denote the maximum number of points in EO
such that x I < ... < XL where Xodd E EO and X even E E;; , or Xodd E EO- and
X

even
E EO+.

DEFINITION 3. If U E U and v E V implies u < v for closed sets U and V
then let the minimal distance between U and V be denoted by

d(U, V) = min{ v: v E V} - max{u: u E U}.

THEOREM 4. Let S= Ud be a sequence in C(X)\Hn, IEn(fdl < 00. If
S has a uniform local Lipschitz constant then there exists a sequence of
alternation sets which has at most two points which coalesce.

Proof Let En(fk)=E~u ... UE~(fk)' If limk~oo 6(E7+1' E7)#O for
i = 1, ... , n, then clearly there exists an A O with IAol = n + 1. Thus there
exists an I such that with y; = min {x E E;} and y;+ I = min {x E E~ t- I} we
have limh oo( y;+ 1 - y;) = O. Note that {En ~ YJ. Define rPk in C(X) by

if XE E},
if x E E; , j # I,



LOCAL LIPSCHITZ CONSTANT 259

and II¢k II :::;; 1, where without loss of generality we assume E~ c E+ (fk)' Let
Pn,dx) denote the corresponding Kolushov polynomials and A(¢d =
{x~, .. " x~ + I} the associated alternation sets, It is not assumed that x7 is
in E7. For convenience let Pk denote Pn, k'

Now

(4.6)

and

(¢k - Pk)( Y~+ I) sgn en(fd( YJ+ d:::;; rxk'

Since SUPk ).~(fk) < 00 it follows that SUPk II Pkll < (f), Also Irxkl:::;; ll¢kll :::;; 1
[14], so {rxd is a bounded sequence, Let {pd denote a subsequence con
verging to q(x) and {CJ.k} a subsequence converging to rx. Letting k -> 00 in
(4.6) we obtain

l-q(YI):::;;rx

- q( Yl+ I )( - 1) :::;; rx

and since YJ=YJ+I we have r:x.~1/2.

For ease of writing assume x~EE-(fk) rather than E+(fk)' Using sub
sequences assume {xl} -> x j ' j = 1, ..., n + I. At each x; E E; when j # I we
have by (4.6) - pdx;)( -1)j = r:x.k so letting k -> 00 gives q(xj ) = (-1 )j+ Ir:x.,

xjEEJ. Since r:x.>0, Xj#Xj + 1 unless xjEE~ or X;+lEE~. If none of the
{x;} are from E~ this gives n + 1 distinct alternating points {x I' ... , X n + 1 }.

Suppose x~ E E;. Then we have points

Xl < X 2 < '., < X;_ 2 < x J-- 1 :::;; X; :::;; xJ+ I < X;+ 2 < ,.. < X n + I , (4.7)

where there are (n+l)-3=n-2 distinct points outside of {xJ - 1 , XJ ,

XJ+ I}' If 1=1 then by (4.7) there are at least n points in AO. (Note that
{XI"",XJ_2' XJ _ 1, x J +2, ...,xn+d alternates in sign so LAEO)~n-1.)

Now the reason A O might not satisfy IAol ~ n is that there could be
coalescence among {XJ_ l' XJ> XJ + 1 }. Note that although J = I and x~ E E~

we do not assume that x~_ I is in E~_ 1 •

Now consider the sets {E~, ..., E~, .." E~ + I} from which the points in
(4.7) are obtained. Let s be the largest index s > I, such that b(E;, En -> 0,
where we know s~ 1+ 1. Then E; splits into two sets E;. I and E;,2'
one of which could be empty, such that max{E;I} <min{E;2}'
limk_ ",(max E;,I -max E;) = 0 and limk_ ",(min E;,2 -max E~)::f O. If in
fact 1imk -x d(Ey, EY+ l)::f 0 then XJ # XJ + 1 and IAol ~ n (since Ao would
contain n-2 points outside of {XJ_I,XJ,XJ+I) and also XJ and x J+ 1 ).

Now also limk_ oo d(E~_p E~)=O else again XJ_I ::fxJ and IAol ~n, So
define sets E~I and E~2 as before with t<J, limk_:ob(E~,E~2)=0and
1imk_x b(E~p E;)#O.

640/77/3-3
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Define functions r/J k by
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if x E E;, j = J + 1, ..., S -1,

if x E E: l'

if x E E~ u E;' 2 u E~ l'

if xEE;,j=t+l, ...,J-l,

if xEE~2'

and IIr/Jdx)11 ~ 1. Let A(r/Jk) = {Y~, ..., Y~+ I} and Ak = E~2 U E~+ 1 U ... u
E;'" Then {Ad-+YJ.

Let {yJ} -+ Yj' We show that different sequences {yJ} outside A k con
verge to distinct points and hence there are at most n - 2 of them. As
before let Pk denote the Kolushov polynomial associated with r/J k and
assume {pd -+ ij. Let Z~_I = max E~_I and z~ = min E~ so that we know
if {zn -+ZJ and {Z~_I} -+ZJ_I then ZJ_I =ZJ. We have

((r/Jk - Pk) sgn en(fk))(zL \) ~ Pk

((r/Jk - Pk) sgn en(fk))(Z~) ~ Pk

so

(-1- pdz~_,))(-1)~Pk

-Pk(ZY)~Pb

which implies

1+ ij(zJ) ~ P

ft(zJ)~P,

so P~ 1/2 and as before this implies that the points outside A k are distinct.
Then there must be at least three sequences {yJ} from points in A k . For

these sequences of points from A k there are at most the following possi
bilities of alternating: +, -, + or -, +, -, and r/Jk must have values
(-1, -1, -1), (-1, -1,0), (-1,0,1), (0, 1, 1), or (1, 1, 1). We shall see
that none of these ten possibilities can occur. Hence there must have been
at least n - 1 points outside A k and thus using one point from EJ we obtain
IAol ~n.

If r/J has values -1 next to -1 (as in (-1, -1, 0) or (-1, -1, -1))
then we obtain (1 - q)( - 1) = P and (1 - q)( + 1) = P so P = 0 which con
tradicts P~ 1/2. If r/J has value 1 next to 1 as in 0, 1,0) or (1, 1, 1) then

(1 - ij)( - 1) = P
(l-ij)(+I)=P
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so f3 = 0, which contradicts f3 ~ 1/2. Thus we need only consider ( -1,0, 1).
Since E~cE+(fk)' the signs must be -, +, -. Thus we obtain

( - q)( + 1) = f3

(l-q)( -1)=f3,

so f3 = -1/2, which again contradicts f3 ~ 112 and the proof is complete.

In [6] (in [7]) it was shown that if EO is a cluster point of {E(f) :fE S}
and IEO\ ~ n - 1 then S does not have a uniform strong unicity (respec
tively uniform global Lipschitz) constant. A similar result follows from the
proof of Theorem 4 for local Lipschitz constants and implies the corre
sponding results for strong unicity and Lipschitz constants.

COROLLARY 1. If S = Ud is a sequence of functions in C(X)\Hn,
IEn(fk) I <00, {En(fd}-.E~ and IE~I~n-l, then S does not have a
uniform local Lipschitz constant.

In fact, the proof in [7] can be modified (just redefining Pkj to satisfy
II Pkj II = lJklj) to show that Corollary 1 holds without the assumption that
IEn(fdl < 00.

Now iflimk ~ 00 inf (j(E~, E~+ 1) > 0 for all i, or iflimk ~ 00 inf (j(E~+ l' En> 0
for all i, then limk~ etC infp(E~, E~+ 1) > 0 and SUPk An(fk) < 00, since it is
easy to show that IA ~ I = n + 1 for some A ~ and hence there is a uniform
strong unicity constant.

Next we consider what happens if limk~ 00 inf p(E~, E~+ 1) =0 for some
I with an assumption on Ln(En(fk)) rather than on \En(fd I· Let d~ =

d( E~ , E7+ 1).

THEOREM 5. Let Uk} be a sequence in C(X)\Hn and assume Ln(fk) =
n + 1, k = 1, .... Suppose there exists an index I such that limk~oo inf p(E7, E;+ 1)
= O. Then SUPk A.~(fk) < 00 if and only if lim k~ 00 d~ > o.

Proof To prove sufficiency observe that p(E;, E7+ 1) -. 0 implies E7
and E; + 1 coalesce into a single point. Since limk~ 00 inf d~ > 0, i ¥ I, any
alternation set will have precisely two points which coalesce. Theorem 3
gives the desired conclusion. Suppose now that limk~ 00 inf d~ = 0, J ¥ I
and assume SUPk A.~(fk)<oo. Let yyEEY and YY+1EEY+l such that
Iy~ - y~+ 11 -+ O. Define tPk E C(X) by IItPkll ~ I and tPk/E ; = -sgn(fkIE 7)
and tPklE~ = 0, i ¥ I (We assume J + 1 ¥ I. If J + 1= I the proof is similar,
just defining tPk1E7+1 = -sgn(fkIE;+l)). Let Pk.n(X) be the Kolushov poly
nomial for tPk with associated alternant {x7}7':;/. By assumption on En(fd,
A(tP,iJ contains one point in each set {E7}7':;/. Then there exists (Xk such
that
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Thus

i=I, ... ,n+1.

(l,bdx 7) - Pk.n(x7)) sgn enfdx7) = ak

Pk,n(x7+ I) sgn en(fd(x7+ I) = ak

Pk,n(X~) sgn enUd(x~) ~ ak

Pk,n(X~+ I) sgn enUk)(X~+ I) ~ ak'

(4,8 )

(4,9)

(4.1 0)

(4.11 )

Since SUPk IIPk,n(x)11 < 00 we can assume that there exists a constant (f. and
a polynomial q(x) such that {ak } --+ a and {Pk,n(x)} --+ q(x), In (4,8 )-(4.11 )
letting k --+ 00 and then adding the resulting (4,8) and (4,9) and then the
resulting (4.10) and (4.11), we obtain -1 =2a and 0~2a a contradiction
which establishes the result.

Remark. Theorem 4 is a generalization of Theorem 2; to clarify
the relationship between Theorem 4 and 5, assume that LnUd = n + 1,
k = 1, "', and limk ~ cx.e inf p(E7, £7+ I) = 0, Then it follows that limk ~ cx.e inf
d~ > 0 for i # I if and only if I A ~ 1 ~ n for every n. Thus Theorem 5 under
stronger assumptions than Theorem 4 has a stronger conclusion,

Example 1 in [7] can be modified to provide an example of a set S with
a uniform local Lipschitz constant but not a uniform global Lipschitz
constant.

EXAMPLE 2. Approximate by Ilion [-1, 1]. For 0 < a < 1/2, let
f~ ( - 1) = f~ (1) = - 1, f~ ( - 1+a) = 1, f~ ( - 1+ 2ex) = - 1+ ex 2, f~ (0) = 1- ex,
and f~ be linear inbetween. Let g~(-I)=g~(I)= -1, g~(-I+a)=

l-a2
, g~( -1 +2a)= -1-2a2

, g~(O)= I-a and g~ be linear inbetween.
Then BIU~)= 0 and IIBI(g~)JI/l1f~- g~ II --+ 00 as a ...... 0+, So U~} does not
have a uniform global Lipschitz constant. But Theorem 2 implies that U~}
has a uniform local Lipschitz constant.

It should be observed that, in the absence of almost alternation sets,
uniformity for global Lipschitz constants occurs precisely when it occurs
for local Lipschitz constants for bounded sets of functions.

THEOREM 6. Let Sr;;;. C(X)\Hn be a bounded set of functions with no
almost alternation sets. Then S does not have a uniform local Lipschitz con
stant if and only if S does not have a uniform global Lipschitz constant (if
and only if there is a sequence Uk} r;;;. S such that {£n(fk)} ...... £2 and
1£21 ~n -1).
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Proof If S does not have a uniform local Lipschitz constant then there
exists an A~ with IA~I ,;;; n - 1 by Theorem 3. The corresponding set E~ can
not satisfy IE2/,;;; n + 1 since then by Theorem 4 in [7] there is either a
limit alternation set or there is a uniform global Lipschitz constant. If
IE21 = n, then as observed in the proof of Theorem 7 in [7] there is an
almost alternation set. Hence IE21,;;; n - 1 and by Theorem 7 in [7] there
is no uniform global Lipschitz constant.

If S does not have a uniform global Lipschitz constant then there exists
a sequence Ud ~ S such that {EnUd} -+ E~ and 1E~ 1 ,;;; n - 1. Hence as
observed after Corollary 1, there is no uniform local Lipschitz constant.

Finally, we describe some conditions which guarantee there will be a
uniform local Lipschitz constant but not a uniform strong unicity constant
and give examples.

THEOREM 7. Let S~ C[ -1, 1] be such that f(n + I)(X) > 0, x E [ -1, 1]
for each f E S. Approximate from [Jn on [- 1, 1]. Suppose that S contains
a sequence {fd such that

lim (inf fJ/+2)(x)/fkn+ l)(X» = 00.
k_08 X

Then S has a uniform local Lipschitz constant and does not have a uniform
strong unicity constant.

Proof First consider the specific class of functions S = {ga(x) : a> 1}
where ga(x)=I/(a-x). Then g~n)(x)=(n+I)! (a-x)-(n+2»O, XE

[-I,I],and

g~n+2)(X) n + 2 n + 2
=-7-...,..-;-;':"'-:" =--,;;;-
g~n+I)(x) a-x a-I'

Let xn(a) denote the (n+ l)st extreme point of ga(x). As observed In

Theorem 4.1 in [20],

lim xn(a) = 1.
a_l+

Since xn+l(a)= 1, E2, the limit extreme point set for S satisfies
IE21 ,;;; n + 1. Also there exist ex and p, ex ~ p> 0 with

and thus by Lemma 2 in [13] the first n + 1 extreme points of ga(x) have
no coalescence.
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Thus 1E21 = n + 1 and S has a uniform local Lipschitz constant by
Theorem 2 and no uniform strong unicity constant by Theorem 4 in [6].

Now let S be any class satisfying the hypothesis. For any a> 1 there
exists k(a) such that

Thus by Theorem 3.1 and Corollary 3.2 in [20], xn(fk(a» > x n( ga) where
xn(fk(a») is the (n + 1)st extreme point of fk(a)' Thus IE2(fk(aj)1 ~ n + 1 and
as above \EO

\ = n + 1.

EXAMPLE 3. In addition to the above specific class S= {l/(a-x)}a>l,
the class S = {emx

} m > 1 satisfies the conditions of the theorem.
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